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Abstract

Genome-wide association studies have been extensively conducted, searching for
markers for complex diseases. Penalization methods have been adopted for the anal-
ysis of joint effects of a large number of SNPs (single nucleotide polymorphisms) and
marker identification. This study has been motivated by the analysis of Ocular Hyper-
tension Treatment Study (OHTS), which for each subject, measures two highly corre-
lated response variables and a large number of SNPs. Existing penalization methods
have been designed to analyze a single response variable, cannot effectively accommo-
date the correlation structure among multiple response variables, and hence can be
inefficient. With multiple response variables sharing the same set of markers, we first
apply joint modeling to accommodate the correlation structure. A group penalization
approach is adopted to select markers associated with all outcomes. An efficient com-
putational algorithm is developed. Simulation study and analysis of the OHTS data
show that the proposed method can outperform existing penalization analysis methods.

Keywords:GWAS; Multiple Outcomes; Penalization.

1 Introduction

This study has been partly motivated by the analysis of Ocular Hypertension Treatment

Study (OHTS) on glaucoma. Glaucoma is a group of diseases that can lead to damage to
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the eye’s optic nerve and result in blindness. Open-angle glaucoma is the most common

form of glaucoma. At first, it has no symptoms, but will gradually deteriorate patients’ eyes

until there is no vision left. In the literature, several clinical risk factors for glaucoma have

been suggested, including age, race, eye pressure, certain characteristics in the anatomy of

the optic nerve, and thinness of the cornea NIH [2002]. An important cause of open-angle

glaucoma is the increased pressure inside the eye(s). OHTS is the first large-scale study to

demonstrate that reducing elevated eye pressure can safely and effectively delay and possibly

prevent the disease Kass et al. [2002]. Particularly, this study shows that, at 60 months, the

cumulative probability of developing glaucoma was 4.4% for study participants who received

the eye drops (which could reduce eye pressure). In contrast, the cumulative probability was

9.5% for study participants who did not receive the eye drops. The difference is statistically

significant.

As with many complex human diseases, clinical risk factors and environmental exposures

have failed to provide a comprehensive description of glaucoma development. Recently, Ram-

das et al. Ramdas et al. [2010] performed a meta-analysis of GWAS (genome-wide association

studies) to identify genetic variants associated with optic disc area and vertical cup-disc ra-

tio. CCT (central corneal thickness) is an important predictive factor for the development

of glaucoma among OHTS participants. There are two measurements per subject, namely

right eye CCT and left eye CCT. CCT measurements on the same subjects tend to be highly

correlated. In the OHTS dataset we analyze, there are 1,058 subjects. Records with missing

CCT values are removed from analysis, leading to an effective sample size of 1,054. On

those subjects, the correlation coefficient between CCT OD (right eye) and CCT OS (left

eye) measurements is 0.958. The five-number summary statistics for CCT OT and CCT

OS are (440.0, 547.2, 573.0, 572.9, 599.0, 692.0) and (444.0, 546.0, 574.0, 573.7, 600.0, 704.0).

11217 SNPs on chromosome 22 were profiled, searching for markers associated with CCT

2



OD and CCT OS.

GWAS data has extremely high dimensionality. To tackle this problem, some statistical

approaches analyze one SNP at a time and then adjust for multiple comparisons. Such

approaches are easy to implement, however, may contradict the fact that the development

and progression of complex diseases are caused by the aggregated effects of multiple SNPs.

They may miss SNPs with weak marginal but strong joint effects. In the analysis of joint

effects of a large number of SNPs, regularized estimation is needed. In addition, it is expected

that only a subset of profiled SNPs are associated with the response variables. Thus, marker

selection is needed along with estimation.

With high-dimensional data, penalization has been extensively applied for regularized es-

timation and variable selection. Commonly used penalization methods include LASSO Tib-

shirani [1996], elastic net Zou and Hastie [2005], bridge Frank and Friedman [1993], Fu

[1998], SCAD Fan and Li [2001], MCP Zhang [2010] and others. Such methods can effec-

tively analyze data with a single response variable with interchangeable covariate effects.

When there exists hierarchical structure among covariates, for example the “pathway, SNP-

within-pathway” two-level structure, the “group” version of the aforementioned penalization

methods have been proposed. The group penalty is usually a composite penalty. For exam-

ple with group SCAD Wang et al. [2007], the outer penalty is the SCAD penalty, and the

inner penalty is the ridge penalty. We note that, such group penalization methods are still

mainly used for the analysis of data with a single response variable. For the aforementioned

penalization methods, computational algorithms based on coordinate descent or boosting

have been developed.

In this study, our goal is to analyze data with multiple correlated response variables

and conduct marker selection. In “classic” statistical analysis with a small number of co-

variates, data with multiple response variables can be accommodated under the framework
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of multivariate analysis of variance (MANOVA) Stevens [2002] and multivariate analysis of

covariance (MANCOVA). However, such methods cannot accommodate high dimensional

covariates. It is possible to first apply existing penalization methods, for example LASSO,

analyze each response variable separately, and then combine the analysis results using meta-

analysis methods. However, such an approach ignores the correlation among response vari-

ables and hence can be less informative.

In OHTS, there are two continuously distributed, highly correlated response variables.

Under a joint modeling framework, we propose first transforming multi-response data into

uni-response data following the same distribution. Then a group LASSO approach is applied

to the transformed uni-response data. With two responses, the effect of one SNP needs to be

represented by two regression coefficients, which naturally form a “group”. We emphasize

that, unlike other group penalization studies in which one group usually corresponds to

multiple covariates, here one group corresponds to a single covariate for multiple responses.

The rest of the paper is organized as follows. In Section 2, we describe the data and model

setup. In Section 3, we describe marker selection using the group LASSO method, propose a

coordinate descent algorithm for estimating model parameters and discuss tuning parameter

selection. Section 4 evaluates the proposed method using simulated data. Section 5 applies

the proposed method to the OHTS data. The article concludes with discussions in Section 6.

2 Analysis of Multi-response Data

Consider data with multiple correlated response variables. With data like OHTS, it is

reasonable to assume that multiple responses share a certain common ground, particularly

the same set of susceptible SNPs. However, we note that although the response variables

are correlated, they are not identical. With the inherent heterogeneity, it is not sensible to

reinforce the same model with the same regression coefficients for different response variables.
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Let M(> 1) be the number of response variables and n be the number of subjects. Denote

y1, . . . , yM as the response variables and x as the n× p covariate matrix. For m = 1, . . . ,M ,

assume that ym is associated with x via the model ym ∼ φ(xβm), where βm(= (βm1 , . . . , β
m
p )′)

is the regression coefficient corresponding to the mth response variable, and φ is the link

function. We first transform the original data frame. For simplicity of notation, we use the

same symbol y but with different subscripts for the new response variable. Although the

proposed method can accommodate different covariates for distinct response variables, we

assume that the same set of covariates are measured for all responses. Let yi be the length-

M vector of response variables, and y = (y′1, . . . , y
′
n)′. Covariates for the ith subject with a

length-M vector of response variables has the form Xi = (Ui1, . . . , Uip) where Uij = xijIm.

The regression coefficient vector is B = (β′1, . . . , β
′
p)
′ where βj = (β1

j , . . . , β
M
j )′.

To better illustrate the basic features of the model settings here, consider a dataset with

M=2 response variables and p SNPs. Assume that only the first 4 SNPs are associated with

responses. Then the coefficients may look like

β1 = (0.1, 0.4, 0.3, 0.8, 0, . . . , 0)′

β2 = (0.03, 0.2, 0.5, 0.6, 0, . . . , 0)′,

and correspondingly,

B′ = (0.1, 0.03, 0.4, 0.2, 0.3, 0.5, 0.8, 0.6, 0, . . . , 0).

The regression coefficient B and corresponding model have the following features. First,

only the first 4 disease-associated SNPs have nonzero regression coefficients (i.e. the model is

sparse). Thus, marker identification amounts to discriminate SNPs with non-zero coefficients

from those with zero coefficients. This strategy has been commonly used in regularized

marker selection. Second, as the two response variables share the same susceptible SNPs,

there is natural grouping structure with the transformed covariates. For example, the first
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two regression coefficients/covariates correspond to the first SNP. Thus, they form a group

of size two and should be selected at the same time.

Motivated by the OHTS data, we describe the proposed approach for studies with quan-

titative traits under linear models. The proposed approach can be easily extended to other

types of response variables and other statistical models, as long as the joint modeling of

response variables can be conducted. In a study with M response variables, the least square

loss function for transformed data can be written as

n∑
i=1

(yi −XiB)′Σ−1(yi −XiB),

where Σ is the covariance matrix among residuals.

3 Penalized Estimation and Marker Selection

3.1 Penalized estimation

From definition, βj = (β1
j , . . . , β

M
j )′ is the coefficients for the M responses at the jth locus.

We define B̂ as the minimizer of the penalized least squares loss function:

B̂ = argmin
B

{
1

2n

n∑
i=1

(yi −XiB)′Σ−1(yi −XiB) + λ

p∑
j=1

√
dj||βj||Σj

}

= argmin
B

{
1

2n
||ỹ −

p∑
j=1

Ũjβj||2 + λ

p∑
j=1

√
dj||βj||Σj

}
. (1)

Here ỹi = Σ−
1
2yi, X̃i = Σ−

1
2Xi, Ũij = Σ−

1
2Uij, ỹ

′ = (ỹ′1, . . . , ỹ
′
n), Ũj = (Ũ ′1j, . . . , Ũ

′
nj)
′, Σj =

n−1Ũ ′jŨj and dj is the number of levels at the jth locus (usually equals M). Note that prior to

the transformation, we assume that the response follows a multivariate normal distribution,

which has been motivated by data similar to OHTS. In contrast, after transformation, the

new response ỹ follows a univariate normal distribution. We center the response and make

the grand mean equal to zero.
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The proposed penalty has been motivated by the following considerations. For a given

SNP locus, we treat its regression coefficients for M response variables as a ”group”, so

that we can evaluate its overall effects. The within-group penalty has an L2 norm, and the

group-level penalty has an L1 norm. Thus, the proposed penalty may have the following main

properties. First, it can conduct group-level selection. Second, if a group is selected, then

all members within that group are selected with non-zero estimates. But the magnitudes

of regression coefficients may differ. On the other hand, if a group is not selected, all of its

member are set to be zero. Such properties properly fit the goal of the proposed analysis.

As discussed in Huang et al. [2011], we need to orthogonalize the transformed covariates

block-wise in order to achieve computational efficiency. Write Σj = R′jRj for an upper

triangular matrix Rj via Cholesky decomposition. Assume that Σj is invertible. Let Vj =

ŨjR
−1
j and bj = Rjβj, then the penalized least-squares in expression (1) becomes

Q(λ, b) =
1

2n
||ỹ −

p∑
j=1

Vjbj||2 + λ

p∑
j=1

√
dj||bj||. (2)

If we center ỹ, there is no need to fit for intercept for (2).

3.2 Computational algorithm

We use the group cyclical coordinate descent (GCD) algorithm originally proposed for group

LASSO and group MCP Yuan and Lin [2006], Huang et al. [2011]. The GCD algorithm

is a natural extension of the coordinate descent algorithm Fu [1998], Wu and Lange [2007],

Friedman et al. [2010]. It optimizes a target function with respect to a single group parameter

at a time and iteratively cycles through all group parameters until convergence is reached.

It is particularly suitable for problems such as the current one that has a simple closed-form

solution with a single group but lacks one with multiple groups.

The GCD algorithm proceeds as follows. For a given λ,
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1. Let b̃(0) be the initial estimate. A sensible initial estimate is zero (component-wise).

Initialize the vector of residuals r = ỹ −
∑p

j=1 Vj b̃
(0)
j and s = 0.

2. For j = 1, . . . , p, repeat the following steps:

(a) Calculate the least-square estimates with respect to bj

ṽj = n−1V ′j (ỹ −
p∑
j=1

Vj b̃
(s)
j + Vj b̃

(s)
j )

= n−1V ′j r + b̃
(s)
j .

(b) Compute

b̃
(s+1)
j = S(ṽj;

√
djλ) =

(
1−
√
Mλ

||ṽj||

)
+

ṽj. (3)

(c) Update r ← r − Vj(b̃(s+1)
j − b̃(s)

j ). s← s+ 1.

3. Iterate Step 2 until convergence.

Breheny and Huang Breheny and Huang [2011] discussed the convergence of coordinate

descent algorithms for SCAD and MCP. We now consider the GCD for group LASSO. For

any given λ, starting from an initial b(0), the GCD algorithm generates a sequence of updates

b(s) = (b
(s)′
1 , . . . , b

(s)′
p ), s = 1, 2, . . . , where

b
(s)
j = argminbjQ(b

(s)
1 , . . . , b

(s)
j−1, bj, b

(s−1)
j+1 , . . . , b(s−1)

p ;λ), 1 ≤ j ≤ p.

Since the sequence {Q(bs;λ) : s ≥ 1} is non-increasing and bounded below by 0, it always

converges. The following proposition is concerned about the convergence of {b(s) : s ≥ 1}.

Proposition 1. For any fixed λ, the GCD updates {b(s) : s ≥ 1} converge to a local minimizer

of the group LASSO criterion Q(λ) and satisfy the inequality

Q(b(s−1);λ)−Q(b(s);λ) ≥ 1

2
||b(s−1) − b(s)||2.
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Huang et al.Huang et al. [2011] showed that the GCD algorithm for group MCP converges.

When γ = +∞, group MCP becomes the group Lasso. The group Lasso should be at least

no worse than the the convergence of group MCP.

3.3 Choice of tuning parameter

There are various methods that can be applied, which include AIC Akaike [1974], BIC Schwarz

[1978], cross-validation Hastie et al. [2009] and generalized cross-validation Wahba [1985].

Chen and Chen Chen and Chen [2008] developed a family of extended Bayes information cri-

teria (EBIC) to overcome the overly liberal selection problem caused by the small-n-large-p

situation. Furthermore, Chen and Chen [2010] established the consistency the EBIC under

the generalized linear models in the small-n-large-p situation. For group LASSO, Yuan and

Lin Yuan and Lin [2006] propose an approximation to the degree freedom (DF). Here, we

apply EBIC with approximated DF to select the tuning parameter λ. The BIC is defined

as:

BIC = nlogRSSλ/n+ d̃f
{
µ̂(λ) ≡ Xβ̂

}
(logn+ 2γlogp), γ ≥ 0

where d is the number of predictors. The DF for group LASSO Yuan and Lin [2006] is

defined as:

d̃f
{
µ̂(λ) ≡ Xβ̂

}
=
∑
j

I(||β̂j|| > 0) +
∑
j

||β̂j||
||β̂LS

j ||
(pj − 1) (4)

where pj is the number of predictors in the jth group and β̂LS
j is the least-square estimates.

Note that when pj = 1 for all j = 1, . . . , p, group LASSO becomes LASSO and its DF

is the number of non-zero parameters selected. Therefore, one can take the LASSO as a

special case of group LASSO and so does the DF in expression(4).
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3.4 Significance level for selected SNPs

With penalization methods, the “importance” of a covariate usually is determined by whether

its regression coefficient is nonzero. In some studies, p-value may also be of interest as a

significance measure. Computing p-value with penalization methods is challenging. Wu

et al. Wu et al. [2009] proposed a leave-one-out approach for computing p-value by assessing

the correlations among selected SNPs in the reduced model. Wu et al. Wu et al. [2009]

also commented that this approach may be invalid because it neglects the complex selection

procedure for defining the reduced model in the first place.

Here, we use a multi-split method modified from the method proposed by Meinshausen

et al. Meinshausen et al. [2009] to obtain p-values. With linear regression, we use F -test for

each group to evaluate whether there are elements in this group with significant effects. This

procedure will put us in a position to produce p-values at the group level. It is simulation-

based and can adjust for multiple comparisons. Multi-split method proceeds as follows:

1. Randomly split data into two disjoint sets of equal size: Din and Dout.

2. Fit data in Din with the proposed method. Denote the set of selected groups by S.

3. Compute P̃j, p-value for group j, as follows:

(a) If group j is in set S, set P̃j equal to the p-value from the F -test in the regular

linear regression where group j is the only group.

(b) If group j is not in set S, set P̃j = 1.

4. Define the adjusted p-value as Pj = min{P̃j|S|, 1}, j = 1, . . . , J , where |S| is the size

of set S.
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This procedure is repeated B times for each group. Let P
(b)
j denote the adjusted p-value

for group j in the bth iteration. For π ∈ (0, 1), let qπ be the π-quartile of {P (b)
j /π; b =

1, . . . , B}. Define Q̃j(π) = min{1, qπ}. Meinshausen et al. Meinshausen et al. [2009] shows

that Q̃j(π) is an asymptotically correct p-value, adjusted for multiplicity. They also propose

an adaptive version that selects a suitable value of quartile based on data:

Qj = min

{
1, (1− log π0) inf

π∈(π0,1)
Q̃j(π)

}
,

where π0 is chosen to be 0.05. It is shown that Qj, j = 1, . . . , J , can be used for both FWER

(family-wise error rate) and FDR (false discovery rate) control Meinshausen et al. [2009].

4 Simulation Studies

We consider six different simulation scenarios, each with 500 subjects and 5,000 or 10,000

SNPs. We simulate two distinct response variables for each subject. The correlation between

the two responses are set to be 0.1, 0.5 and 0.9. For each response variable, there are 12 SNPs

with nonzero effects. We further consider the scenario where the 12 SNPs can be clustered

into 3 clusters. The correlation among each cluster is 0.2. The correlation among SNPs not

associated with response is set to be 0.2 but independent of those associated clusters. The

genotypes are first generated from multivariate normal distribution and then categorized

into 0,1 or 2. To mimic a SNP with equal allele frequency, we categorize genotype in a

way similar to Wu et al. [2009]. The genotype is set to be 0, 1 or 2 depending on whether

xij < −c, −c ≤ xij ≤ c or xij > c, where c is the 3rd-quartile of x. For the first response

variable, the regression coefficient is

(0, . . . , 0︸ ︷︷ ︸
24

, 2, 2, 2, 2, 0, . . . , 0︸ ︷︷ ︸
12

, 1,−1, 1,−1, 0, . . . , 0︸ ︷︷ ︸
12

, 2,−1, 2,−1, 0, . . . , 0︸ ︷︷ ︸
p−60

).
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For the second response variable, the regression coefficient is

(0, . . . , 0︸ ︷︷ ︸
24

, 0.5, 0.5, 0.5, 0.5, 0, . . . , 0︸ ︷︷ ︸
12

,−2, 2,−2, 1, 0, . . . , 0︸ ︷︷ ︸
12

, 1,−2, 1,−2, 0, . . . , 0︸ ︷︷ ︸
p−60

).

Both response variables depend on the same genotypic data and are correlated through the

residuals. Clustering structure exists in this simulation.

To better gauge performance of the proposed approach, we also consider the following

alternative approach. We first analyze each response variable separately using Lasso, and

then combine the results by examining the overlapped SNPs. For both approaches, we apply

the EBIC method described in Section 3.3 to select the tuning parameter λ. We evaluate

the number of SNPs identified, the number of true positives, false discovery rate (FDR) and

false negative rate (FNR).

The results based on 100 Monte Carlo replicates are summarized in Table 1. Note that

the true trait-related SNPs are 25—28, 41—44 and 57—60 on both phenotypes. Totally,

there are 12 SNPs associated with 2-level phenotypes. Simulation study suggests that the

proposed method is more effective in selecting true positives. Comparing to the proposed

method, analyzing each response separately has fewer true positives. A tradeoff is that

the proposed method may also identify a few more false positives. However, it is still at a

comparably acceptable range. Hence the proposed method outperforms the individual Lasso

selection. p-values evaluated by the multi-split method for the selected groups are presented

in Table 2. It can be shown that most true positives have significant p-values and all false

positives have insignificant p-values.

[Table 1 about here.]

[Table 2 about here.]
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5 Application to Ocular Hypertension Treatment Study

The OHTS data is described in Section 1. We refer to the original publication for more

detailed descriptions. The data we analyze contains 1,054 subjects, two highly correlated

response variables on each subject – CCT OD and CCT OS, and 11217 SNPs on chromosome

22. We analyze the data using three different approaches: the traditional one-SNP-at-a-time

approach, analysis of individual response using LASSO, and the proposed approach. In

Figure 1 the upper two panels, we show the absolute values of β estimates from the single-

SNP analysis. When analyzing each response separately using LASSO, we use the method

described in section 3.3 to select the tuning parameter λ. We find that the selected model

model contains no SNP (hence results now plotted). The proposed approach identifies 4

SNPs. Information on the identified SNPs, corresponding estimates and p-values are shown

in Table 3. One can see that 2 of them are highly significant and other 2 SNPs are moderately

significant. With our limited knowledge on susceptibility SNPs for glaucoma, we are not able

to objectively evaluate the biological implications of identified SNPs. As an alternative, we

consider the following evaluation of prediction performance. (a) Randomly split the sample

into given parts with equal sizes; (b) Analyze four parts using the proposed approach; (c)

Use the obtained model and make prediction for subjects in the left-out part; (d) Repeat

Steps (b) and (c) over all five parts. The proposed approach is a penalization approach,

which shrinks estimates towards zero. Thus, the prediction sum of squared errors may not

be the appropriate measure. Instead, we evaluate the correlation between predicted and

observed values. The mean prediction correlation coefficient is 0.085 , which suggests that

the proposed approach is able to provide a reasonable prediction using identified SNPs.

We note that the identified SNPs are only capable of explaining a small percentage of

variation of CCT. Such a result is in fact not surprising. CCT is a complex trait and is
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potentially related to multiple clinical risk factors, environmental exposures, and genetic

risk factors. The predictors we analyze all come from chromosome 22, which is expected to

cover only a small percentage of risk factors. As one can see from the results that the null

models are identified by Lasso, the signals are weak in this OHTS dataset. Despite that

the result of the proposed method is not dramatic, it does advance from individual Lasso

analysis.

[Table 3 about here.]

[Figure 1 about here.]

6 Conclusions

In the study of complex diseases, it is not uncommon that a single trait cannot provide a

comprehensive description of disease, and hence multiple traits need to be measured. In

this article, we study the scenario where multiple traits share the same set of susceptibility

SNPs. A penalization approach is proposed for marker selection. The proposed approach

can accommodate the joint effects of multiple SNPs and is hence more informative than

single-SNP based analysis. Compared with existing approaches that analyze different traits

separately, it can more effectively accommodate the correlation among traits and hence be

more effective in marker selection. Numerical studies, including simulation and analysis of

OHTS data, show satisfactory performance of the proposed approach.

The OHTS data we analyze have two continuous response variables with marginally

normal distributions. With other types of response variables, there is a rich literature on

joint modeling, which can be adopted to couple with the proposed marker selection. The

proposed approach is based on the group Lasso penalty. We expect that other “group-type”

penalties, such as group SCAD or group bridge, can be applied. The group Lasso is selected
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because of its computational simplicity. Analysis of chromosome 22 data shows that the

proposed approach may identify SNPs missed by single-response analysis, and such SNPs

may have reasonable prediction performance. The ultimate performance of the proposed

approach and identified SNPs needs to be examined together with other risk factors and

susceptibility SNPs on other chromosomes.
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(a) Phenotype 1

(b) Phenotype 2

(c) The proposed method

Figure 1: Absolute value of |β| estimates from the simple linear regression on both levels
and the proposed method.
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Table 1: Simulation studies on 6 different settings. The numbers are mean (standard devia-
tion) based on 100 replicates.

Combined Individual
p ρ True Positive Model Size FDR FNR

5000 0.1 12.32(1.73) 14.34(2.85) 0.127(0.099) 0.487(0.072)
5000 0.5 11.83(2.21) 13.70(3.30) 0.120(0.099) 0.507(0.092)
5000 0.9 11.96(2.34) 13.52(3.13) 0.103(0.089) 0.502(0.097)
10000 0.1 11.18(2.28) 12.89(3.28) 0.115(0.107) 0.534(0.095)
10000 0.5 11.19(2.20) 12.59(3.02) 0.097(0.091) 0.534(0.092)
10000 0.9 10.90(2.45) 12.55(3.51) 0.113(0.100) 0.546(0.102)

Proposed Approach
p ρ True Positive Model Size FDR FNR

5000 0.1 19.26(4.09) 23.18(6.89) 0.141(0.122) 0.198(0.170)
5000 0.5 21.18(3.24) 24.96(6.64) 0.122(0.123) 0.118(0.135)
5000 0.9 22.98(1.26) 31.32(6.56) 0.240(0.134) 0.043(0.052)
10000 0.1 17.47(4.17) 20.28(6.76) 0.107(0.111) 0.279(0.187)
10000 0.5 19.21(4.91) 21.47(6.81) 0.082(0.100) 0.199(0.204)
10000 0.9 22.70(1.28) 31.78(7.98) 0.249(0.156) 0.054(0.053)
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Table 2: Multi-split p-values for simulated data.
p=5000 p=10000

SNP index ||β̂|| p-value ||β̂|| p-value
25 0.185 1.46e-07 0.185 1.39e-05
26 0.138 2.67e-05 0.175 7.54e-05
27 0.156 3.68e-07 0.176 6.07e-04
28 0.161 1.45e-06 0.213 4.23e-07
38 0.013 1.000
41 0.371 6.45e-04 0.564 3.23e-04
42 0.472 0.126 0.569 2.02e-04
43 0.295 0.028 0.429 4.15e-04
44 0.435 0.012 0.826 1.88e-10
57 0.075 0.217 0.073 1.000
59 0.117 3.26e-03 0.147 0.784
60 0.100 0.204 0.042 1.000

2081 0.004 1.000
2200 0.011 1.000
4964 0.009 1.000
8482 0.008 1.000

∗ Empty cells stand for SNPs that are not identified from the model
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Table 3: Multi-split p-values for simulated data.

SNP Name Position Band ||β̂|| p-value
rs5752182 24281739 22q11.23 0.0168 6.36e-04
rs5762319 26426963 22q12.1 0.0060 0.022
rs5995107 34222746 22q12.3 0.0094 0.026
rs5996279 41876677 22q13.2 0.0281 5.34e-05
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